James Gleick And ‘The Information’


We’ll have a conversation with James Gleick on his opus “The Information: A History, A Theory, A Flood.”

(Dave Pearson/Flickr)

(Dave Pearson/Flickr)

We live in the information age. We hardly understand yet what that fully means. And yet, we can join the crowd of humans through history.

Plato worried that the written word would produce forgetfulness in the minds of those who wrote instead of memorizing. Now, vast machines – and some very tiny ones – record so much of our lives and thoughts that we can feel overwhelmed.

Science chronicler James Gleick says fear not: We can be emboldened by the information flood that now frames our world.

This hour in an archive edition of On Point: We’re going deep with James Gleick on information.

– Tom Ashbrook


James Gleick, author of “Genius: The Life and Science of Richard Feynman” and “Isaac Newton,” which were both short listed for the Pulitzer Prize. His book “Chaos: Making a New Science” was a National Book Award and Pulitzer Prize finalist. His new book is, “The Information: A History, A Theory, A Flood.”


The Information: A History, A Theory, A Flood.
By James Gleick
From the Prologue

We can see now that information is what our world runs on: the blood and the fuel, the vital principle. It pervades the sciences from top to bottom, transforming every branch of knowledge. Information theory began as a bridge from mathematics to electrical engineering and from there to computing. What English speakers call “computer science” Europeans have long since known as informatique, informatica, and Informatik. Now even biology has become an information science, a subject of messages, instructions, and code. Genes encapsulate information and enable procedures for reading it in and writing it out. Life spreads by networking. The body itself is an information processor. Memory is stored not just in brains but in every cell. No wonder genetics bloomed along with information theory. DNA is the quintessential information molecule, the most advanced message processor at the cellular level—an alphabet and a code, 6 billion bits to form a human being. “What lies at the heart of every living thing is not a fire, not warm breath, not a ‘spark of life,’” declares the evolutionary theorist Richard Dawkins. “It is information, words, instructions. . . . If you want to understand life, don’t think about vibrant, throbbing gels and oozes, think about information technology.” The cells of an organism are nodes in a richly interwoven communications network, transmitting and receiving, coding and decoding. Evolution itself embodies an ongoing exchange of information between organism and environment.

James Gleick (Phyllis Rose/Courtesy)

James Gleick (Phyllis Rose/Courtesy)

“The information circle becomes the unit of life,” says Werner Loewenstein after thirty years spent studying intercellular communication. He reminds us that information means something deeper now: “It connotes a cosmic principle of organization and order, and it provides an exact measure of that.” The gene has its cultural analog, too: the meme. In cultural evolution, a meme is a replicator and propagator—an idea, a fashion, a chain letter, or a conspiracy theory. On a bad day, a meme is a virus.

Economics is recognizing itself as an information science, now that money itself is completing a developmental arc from matter to bits, stored in computer memory and magnetic strips, world finance coursing through the global nervous system. Even when money seemed to be material treasure, heavy in pockets and ships’ holds and bank vaults, it always was information. Coins and notes, shekels and cowries were all just short-lived technologies for tokenizing information about who owns what.

And atoms? Matter has its own coinage, and the hardest science of all, physics, seemed to have reached maturity. But physics, too, finds itself sideswiped by a new intellectual model. In the years after World War II, the heyday of the physicists was at hand. The great news of science appeared to be the splitting of the atom and the control of nuclear energy. Theorists focused their prestige and resources on the search for fundamental particles and the laws governing their interaction, the construction of giant accelerators and the discovery of quarks and gluons. From this exalted enterprise, the business of communications research could not have appeared further removed. At Bell Labs, Claude Shannon was not thinking about physics. Particle physicists did not need bits.

And then, all at once, they did. Increasingly, the physicists and the information theorists are one and the same. The bit is a fundamental particle of a different sort: not just tiny but abstract—a binary digit, a flip-flop, a yes-or-no. It is insubstantial, yet as scientists finally come to understand information, they wonder whether it may be primary: more fundamental than matter itself. They suggest that the bit is the irreducible kernel and that information forms the very core of existence. Bridging the physics of the twentieth and twenty-first centuries, John Archibald Wheeler, the last surviving collaborator of both Einstein and Bohr, puts this manifesto in oracular monosyllables: “It from bit.” Information gives rise to “every it—every particle, every field of force, even the space-time continuum itself.” This is another way of fathoming the paradox of the observer: that the outcome of an experiment is affected, or even determined, when it is observed. Not only is the observer observing; she is asking questions and making statements that must ultimately be expressed in discrete bits. “What we call reality,” Wheeler writes coyly, “arises in the last analysis from the posing of yes-no questions.” He adds: “All things physical are information-theoretic in origin, and this is a participatory universe.” The whole universe is thus seen as a computer—a cosmic information-processing machine.

How much does it compute? How fast? How big is its total information capacity, its memory space? What is the link between energy and information; what is the energy cost of flipping a bit? These are hard questions, but they are not as mystical and metaphorical as they sound. Physicists and quantum information theorists, a new breed, struggle with them together. They do the math and produce tentative answers. (“The bit count of the cosmos, however it is figured, is ten raised to a very large power,” according to Wheeler. According to Seth Lloyd: “No more than 10120 ops on 1090 bits.”) They look anew at the mysteries of thermodynamic entropy and at those notorious information swallowers, black holes. “Tomorrow,” Wheeler declares, “we will have learned to understand and express all of physics in the language of information.”

Please follow our community rules when engaging in comment discussion on this site.
Jun 9, 2016

Newly-minted college graduates on the job hunt. We’ll look at who’s hiring, starting salaries, and strategies for landing that first job.

Jun 9, 2016

Europe, India and China, are taking on American tech giants over privacy, monopolies, and more. We’ll look at the global technology pushback against the U.S.A.

On Point Blog
On Point Blog
Jessica Valenti: ‘Objectification Is About Dehumanizing People’
Wednesday, Jun 8, 2016

“There is some power in laying claim to the word victim.” — Jessica Valenti on the Stanford sexual assault case, and the importance of language.

More »
Why The ‘Roots’ Remake Matters (And What Stays The Same)
Tuesday, Jun 7, 2016

The recent remake of “Roots” on the History Channel makes important changes, Morehouse College’s Stephane Dunn argues. But it also holds true to the original story.

More »
Former Trump Advisor Roger Stone: ‘Trump’s Going To Be The Next President’
Monday, Jun 6, 2016

Longtime political consultant Roger Stone apologizes for his “two martini tweets,” even as he predicts Donald Trump will be the next U.S. president.

More »